Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity.

نویسندگان

  • Jianying Shang
  • Chongxuan Liu
  • Zheming Wang
  • John M Zachara
چکیده

The contribution of variable grain sizes to uranium adsorption/desorption was studied using a sediment from the US DOE Hanford site. The sediment was wet sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.053-0.2 mm), and clay/silt fraction (<0.053 mm). For each size fraction and their composite (sediment), batch and flow-cell experiments were performed to determine uranium adsorption isotherms and kinetic uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. One important implication of this study is that grain-size distribution may be used to estimate uranium adsorption site and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

Removal of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies

The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...

متن کامل

NUREG/CR-6708 "Surface Complexation Modeling of Uranium (VI) Adsorption on Natural Mineral Assemblages"

The value of surface complexation modeling of radionuclide adsorption in supporting the selection of KI values should be given wider recognition within the performance assessment modeling process. Studies of uranium(Vl) adsorption by a weathered schist and specimen mineral phases that comprise the schist were conducted as a function of aqueous chemical conditions in laboratory experiments. The ...

متن کامل

The effects of uranium speciation on the rate of U(VI) reduction by Shewanella oneidensis MR-1

We measured the kinetics of U(VI) reduction by Shewanella oneidensisMR-1 under anaerobic conditions in the presence of variable concentrations of either EDTA or dissolved Ca. We measured both total dissolved U and U(VI) concentrations in solution as a function of time. In separate experiments, we also measured the extent of U(VI) adsorption onto S. oneidensis in order to quantify the thermodyna...

متن کامل

Effects of phosphate on uranium(VI) adsorption to goethite-coated sand.

U(VI)-phosphate interactions are important in governing the subsurface mobility of U(VI) in both natural and contaminated environments. We studied U(VI) adsorption on goethite-coated sand (to mimic natural Fe-coated subsurface materials) as a function of pH in systems closed to the atmosphere, in both the presence and the absence of phosphate. Our results indicate that phosphate strongly affect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 45 14  شماره 

صفحات  -

تاریخ انتشار 2011